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Very short pulses of X-ray free-electron lasers opened the way to obtaining

diffraction signal from single particles beyond the radiation dose limit. For

three-dimensional structure reconstruction many patterns are recorded in

the object’s unknown orientation. A method is described for the orientation

of continuous diffraction patterns of non-periodic objects, utilizing intensity

correlations in the curved intersections of the corresponding Ewald spheres,

and hence named the common arc orientation method. The present

implementation of the algorithm optionally takes into account Friedel’s law,

handles missing data and is capable of determining the point group of symmetric

objects. Its performance is demonstrated on simulated diffraction data sets and

verification of the results indicates a high orientation accuracy even at low signal

levels. The common arc method fills a gap in the wide palette of orientation

methods.

1. Introduction

The idea of single-particle structure determination by means

of diffraction beyond the radiation dose limit using very short

pulses of X-ray free-electron lasers (XFEL) emerged more

than a decade ago (Neutze et al., 2000; Hajdu, 2000). Although

early papers envisaged the three-dimensional structure of

single biomolecules (Miao et al., 2001, 2004; Webster &

Hilgenfeld, 2002; Huldt et al., 2003), recent experiments have

studied particles of a few hundred nm in size at most with a

resolution of a few nm (Chapman et al., 2006, 2011; Barty et al.,

2008; Song et al., 2008; Mancuso et al., 2009, 2010; Bogan et al.,

2010; Loh et al., 2010; Seibert et al., 2011). It is true, however,

that the principle is proven and the progress continuous. One

type of such measurements records a large number of

continuous diffraction patterns of replicas of the non-periodic

object in unknown random orientations and the three-

dimensional scattering density is determined through elabo-

rate evaluation processes. The original concept of data

processing consists of three separate steps: improving the

statistics of low-intensity patterns by grouping and averaging,

orientation by finding the intersection of the patterns, and

finally real-space structure reconstruction by iterative phase

retrieval. Here we focus on how the unknown random

orientation of the individual scattering patterns can be

determined.

The method proposed first for orientation originates from

the field of cryo-electron microscopy (DeRosier & Klug, 1968;

Hart, 1968; Crowther, 1971; van Heel, 1987; van Heel et al.,

2000; Frank, 1996; Penczek et al., 1996) where planar central

sections of the three-dimensional Fourier transform of the

object are derived from the measured tomographic projec-

tions (based on the central section theorem); they are oriented

by identifying their straight intersection lines through the

origin, the common lines. The case of diffraction is different:

the measured diffraction patterns define randomly oriented

Ewald spheres in the reciprocal space, so their intersections

are circles instead of straight lines. They can be oriented via

identification of these common arcs; however, there are

significant differences because of the geometry. While the

concept of common arcs has been known for a long time

(Huldt et al., 2003), the method has never been applied or

analysed in detail. There is a single case where the tangent to

the common arc – the common line – was utilized to orient

diffraction patterns (Shneerson et al., 2008). This is an

approximate solution, which is valid when the curvature of the

Ewald sphere is negligible, typically in low-resolution, short-

wavelength measurements. That geometry also necessitates

the inspection of triplets of patterns when determining the

orientation. Other methods have also been proposed for

orienting low-intensity diffraction patterns based on genera-

tive topographic mapping (Fung et al., 2009) and expansion

maximization compression (Loh & Elser, 2009) which are able

to utilize the similarity of patterns of close orientations and do

not require preliminary classification. These methods were

shown to be closely related (Moths & Ourmazd, 2010) and, in

principle, are able to operate at the lowest intensities close to

the limit where the differences due to counting noise or

different orientation can be separated (Elser, 2009). A method

for obtaining the reciprocal-space intensity distribution based
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on a different principle was also proposed (Saldin et al., 2009),

and the two approaches were critically compared (Elser,

2010).

In this paper we supply the missing orientation method

based on the common arcs of continuous diffraction patterns.

The method is described in detail, its operation is demon-

strated on the simulated data sets of two scattering objects,

and the results are analysed carefully. Various questions that

have arisen during experiments, e.g. the question of counting

noise, validity of Friedel’s law, symmetric objects and missing

data, are all addressed by the common arc orientation method.

We obtain rather precise orientations at significantly lower

intensities than anticipated (Shneerson et al., 2008). Also, the

complete set of symmetry operations can be determined in the

case of symmetric scattering objects. The excellent perfor-

mance is attributed to the exact handling of the curvature of

the common arcs and the high redundancy in the complete set

of the pairwise determined relative orientations. The elements

of the common arc orientation method are described in x2 and

its application is demonstrated in x3.

2. Methods

2.1. Principle of the common arc method

The Ewald spheres are two-dimensional spherical slices of

the reciprocal space through its origin that represent the

achievable region for a single diffraction measurement at

constant energy. The common arc method determines the

unknown orientation of scattering objects by finding the

intersection arcs of the corresponding Ewald spheres. The

operation of this orientation method can be divided into two

main steps:

(i) Determine relative orientation of all pattern pairs by

searching for matching common arcs. The correlation of

intensity distribution along intersection arcs as a function of

relative orientation is calculated for each pair of diffraction

patterns. The best relative orientation is determined by finding

the largest correlation. This yields N(N � 1)/2 unique relative

orientations, representing the maximum pairwise obtainable

information, N being the number of patterns to orient.

However, ultimately we need only N � 1 relative orientations,

as the whole data set can be arbitrarily oriented. This means

N/2-fold redundancy, representing the fact that each pattern

intersects all other patterns (and vice versa) providing orien-

tation information. This opens up the space for a consistency

check and averaging of orientations that are performed in the

next step.

(ii) Determine consistent absolute orientation of each pattern

by selection and averaging. The orientation of one arbitrarily

selected pattern is fixed and all other pattern orientations are

determined relative to this in several ways utilizing all avail-

able relative orientation information. The resulting set of

absolute orientations for each pattern is checked for consis-

tency; the reliable ones, which fall close to each other, are

selected and averaged. Then the obtained absolute orientation

of each pattern can be used to construct the three-dimensional

reciprocal-space data for phase retrieval and three-dimen-

sional structure reconstruction.

In the following sections we discuss the details and the

formalism of the common arc method.

2.2. Relative orientation

Initially, all the scattering patterns are given in the same

‘laboratory’ Cartesian coordinate system, where typically the

xy ‘detector plane’ is perpendicular to the z ‘beam axis’. These

data must be located in the reciprocal space by appropriate

orientation and projection onto the Ewald sphere. However,

without knowing the actual orientation of the sample, we

cannot properly orient the Ewald sphere. Therefore,

temporarily all patterns are projected on the same sphere in a

standard, laboratory setting. To bring two such projected but

not yet oriented patterns (Pa and Pb) into a correct relative

orientation, where their intersection along the common arc

becomes obvious, one has to rotate at least one of them. To

describe this rotation, i.e. relative orientation, we use three

Euler angles, �, �, � (in the same convention as shown in Fig.

1 of Shneerson et al., 2008). The three rotations described by

rotz(�) � rotx(�) � rotz(��) are illustrated in Fig. 1 and can

be explained as follows: one of the patterns in its standard

setting (e.g. Pb) is rotated about the beam axis by ��
azimuthal angle, which brings the tangent to the common arc

through the origin (i.e. the common line) of this pattern to the

x axis. Then this pattern is tilted about the x axis by the �
angle. We call this � angle the hinge angle, as this defines the

‘inclination’ of the two intersecting Ewald spheres and ulti-

mately determines the curvature of the common arc. Finally,

the tilted pattern is rotated again about the beam axis by the �
azimuthal angle to bring the common arc of Pb into an exact

overlap with that of Pa which is still in its standard setting. In

another view, the inverse of this last rotation could be

equivalently applied to the Pa pattern. Although the Euler

angles are not always the best choice for orientation/rotation

parameterization (versus e.g. quaternion representation), in

this case they exactly correspond to the beam axial rotation of

the two patterns and their actual inclination. Therefore we find

them the most suitable to the problem.

After performing the above rotations we have set the two

scattering patterns into correct relative orientation as illu-

strated in the upper panel of Fig. 2. The two spheres are the
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Figure 1
Illustration of the three Euler rotations describing the relative orientation
of two patterns, Pa and Pb. Circles indicate either the tangent planes to
the Ewald spheres at the origin of the reciprocal space or equally the
detector planes in the real space. For further explanation, see text.



intersecting Ewald spheres; the areas with a polar grid illus-

trate the measured regions of the two scattering patterns.

Their intersection, the common arc (CA), is plotted in red and

the tangent to the common arc through the origin (O) is the

approximating common line (CL), shown in green. It can be

seen how limited the scattering range is, where the common

line well approximates the common arc.

2.3. Common arc

In order to be able to correlate intensities along the

common arc we have to determine its equation. It follows from

the parameterization of relative orientations by the Euler

angles that the � and � rotations define only the azimuthal

position of the common arc in the Pa and Pb patterns. The

curvature of the common arc is defined solely by the � hinge

angle. This geometry suggests polar gridding of the patterns on

the Ewald sphere and polar parameterization for the equation

of the common arc. To avoid confusion with the Euler angles

or the Bragg angle, let � denote the polar and � the azimuthal

angular coordinate. � runs from the minimal to the maximal

scattering angle, its zero corresponds to the forward scattering

direction and � optimally covers a whole circle. The middle

panel of Fig. 2 repeats the upper panel in a transparent view to

aid the derivation of the equation. Here O marks the origin of

the reciprocal space, A and B are the origins of the two Ewald

spheres (indicated by their main circles in the OAB plane), P

is an arbitrary point of the common arc, Q is defined as the

projection of P onto the OAB plane and R as the projection of

P onto the OA line. Further, PARff ¼ � by definition,

QPRff ¼ � if � is measured from the normal of the OAB plane

and AOBff ¼ �, the hinge angle. Now let us consider the

three highlighted right-angled triangles that are also shown

in the last row of Fig. 2. Temporarily assuming unit radius

for the spheres, from the first triangle OR ¼ 1� cos�
and PR ¼ sin�. Then in the second triangle QR ¼

OR tanð�=2Þ ¼ ð1� cos�Þ tanð�=2Þ. Finally, in the third

triangle sinð�Þ ¼ QR=PR with proper substitution yields the

following base equation for the common arc in the polar

coordinates:

sin � ¼
1� cos�

sin�
tan

�

2
: ð1Þ

It is plotted in red in Fig. 3 for several � angles to illustrate

how the common arc bends starting from a line, becomes a

closed circle and finally shrinks to a point as � runs from 0 to

�. The formula has the following properties: the origin � = 0, �
= 0 is always an asymptotic solution to this equation; this is a

fix point to all common arcs. Apart from the � = 0 and � = �
singular cases, there are two symmetric branches starting from

the origin: � and � � � representing the two halves of the

common arc. Depending on �, these two branches meet again

at � = � � � polar and � = �/2 azimuthal angle, and the

common arc becomes a full common circle. If � = 0 (the two

Ewald spheres exactly overlap), or if � = � (the two Ewald

spheres face each other), the common arc becomes degenerate

(extends to the whole sphere or shrinks to a point). These

singular cases are not described by the above equation. It is

more important, however, that this equation defines the arcs in

the two investigated patterns along which we will have to find

similar intensity distributions. It is done with an exhaustive

three-dimensional search of the �, � and � angles that yield

the maximum correlation. Although the above base equation

depends on the � hinge angle only, it is assumed that the �
and � azimuthal rotations have already been applied to the

two intersecting patterns. These rotations by definition simply

just shift the � azimuthal coordinates, so the polar coordinates

of the common arc will be (�, � � �) and (�, � + �) in the Pa

and Pb patterns, respectively. Note the opposite signs of � due

to opposite curvature of arcs in the two patterns.

To easily obtain the data points along the common arc, it is

expedient to resample the measured patterns to a polar grid

by some kind of interpolation and/or averaging during

preprocessing. (At least one transformation of the data is

likely to be unavoidable for any data evaluation, as the typical
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Figure 2
Upper panel: intersection of two Ewald spheres showing the geometry of
two diffraction patterns (Pa , Pb), their common arc in red (CA), its
tangent at the origin, the approximating common line in green (CL) and
the common arc of a pattern with the other pattern’s Friedel pair in blue
(Fa , Fb). The Friedel pairs of the Ewald spheres, i.e. their inversion across
the origin (O), are not shown for clarity. Middle panel: the same view of
the construction made transparent. The spheres are shown by their main
circles only, P is an arbitrary point of the common arc, Q and R are its
projections onto the OAB plane and the OA line, respectively. Lower
panel: extract of the three highlighted right-angled triangles used in the
derivation of the equation of common arc. For further explanation, see
text.



Cartesian two-dimensional detector pixel arrangements result

in a hard-to-use distorted grid on the Ewald sphere, which is

inconsistent with our ultimately desired three-dimensional

Cartesian grid in the reciprocal space required by iterative

reconstruction methods.) This way the advantageously chosen

parameterization and polar gridding of the patterns together

make possible a fast implementation of the three-dimensional

maximum search procedure.

2.4. Friedel’s law

If the scattering process involves no phase shift, it can be

described by real scattering factors and Friedel’s law applies.

The intensities in the reciprocal space possess inherent

inversion symmetry, since the corresponding scattering

amplitudes are complex conjugates. For light elements, Frie-

del’s law is applicable in most of the X-ray scattering cases, if

we avoid the anomalous scattering near absorption edges.

However, it becomes definitely invalid if the energy is lowered

to the soft-X-ray region, for example to utilize transparency in

the water window.

If the conditions of the measurement make Friedel’s law

applicable, that will advantageously affect our common arc

orientation method as follows. Because of the inversion

symmetry, any two opposite points in the reciprocal space will

have the same intensity. Consequently, any measured scat-

tering pattern determines the intensity distribution in the

reciprocal space on two Ewald spheres: on one sphere directly

and on the opposite sphere through the inverted pattern. We

can exploit this when searching for the common arc of Pa and

Pb patterns by using their opposite patterns Pa and Pb, and

simultaneously comparing intensities along the intersection

arc of Pa and Pb, for example (other combinations would not

yield independent information). This effectively doubles the

average length of the correlated arcs, making the correlation

factor more reliable, less sensitive to noise.

The ‘Friedel’ common arcs are shown in both the upper

panel of Fig. 2 and in Fig. 3 in blue. Their equation can also be

calculated using equation (1) above, except tanð�=2Þ must be

replaced by � cotð�=2Þ owing to the inversion of one of the

spheres. For the same reason, the Friedel common arcs are

flipped. Fig. 3 illustrates the complementary role of the two

sets of arcs.

The option to include the Friedel common arcs in the

relative orientation search and forcing the inversion symmetry

when the three-dimensional reciprocal-space intensity is

constructed from the oriented individual scattering patterns

depends only on the physical applicability of Friedel’s law and

in no other way influences the process of orientation.

2.5. Correlation

When searching for the �, �, � Euler angles determining

the best matching relative orientation of two patterns along

their common arcs, a weighted Pearson correlation factor is

calculated as a measure of the similarity. This takes the

following form:

� ¼

PL
l¼1

wl al � �aað Þ bl �
�bb

� �
PL
l¼1

wlðal � �aaÞ2
� �1=2 PL

l¼1

wlðbl �
�bbÞ2

� �1=2
;

�aa ¼

PL
l¼1

wlal

PL
l¼1

wl

; �bb ¼

PL
l¼1

wlbl

PL
l¼1

wl

: ð2Þ

Here all sums run through the L pixels along the common arcs

(either including the Friedel common arcs or not), al and bl

denote the interpolated intensities from the two compared

patterns, and wl implements an optional weighting. These are

obtained as follows. The scattering patterns already given on

the polar grid described above are pre-normalized with the

average scattering-angle dependence of all patterns. This
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Figure 3
Common intersection arcs of two Ewald sphere projected scattering
patterns (Pa , Pb) extending to 45� scattering angle for several � hinge
angles. It is assumed that the � and � azimuthal rotations already applied
bring the tangent common line to the same (vertical) direction. The red
curves show the two branches of the ‘direct’ intersection arcs (D1, D2),
and the blue ones show the ‘Friedel’ intersection arcs (F1, F2). Note the
flipped branches of the Friedel arcs.



prevents the domination of often orders of magnitude higher

intensities at low scattering angles. At the same time, their

higher reliability due to counting statistics can be taken into

account by properly chosen wl weights. These weights can also

express the higher sensitivity of the outer pixels to the

orientation. The exact weighting scheme is a parameter of the

method, which typically can be a function of intensity, statistics

or even the scattering angle. However, regardless of the scale

of the correlated values and the applied weighting, the

correlation factor falls in the [�1,+1] range, �1 representing

anticorrelation, 0 no correlation and +1 the perfect correla-

tion. This puts the �ð�;�;�Þ correlation maps on an absolute

scale, when searching for the maximal � value on a discrete

grid of the �, �, � Euler angles. This is useful in the judgment

of the best matching common arc of each pattern pair.

2.6. Absolute orientation

Once the relative orientation of all pattern pairs described

by the rotation matrix Rij is found, an absolute orientation

matrix, Oi, has to be determined for each pattern. For one

selected pattern, e.g. O1, it can be arbitrary, e.g. the eye matrix,

as the orientation of the whole reciprocal space is irrelevant.

Then, the orientation of all other patterns is obtained by Oi
(1)

= Ri1 � O1. In principle this step solves the orientation

problem, as all orientations are determined. However, one

should go further to exploit the high degree of redundancy in

the complete set of relative orientations. This is achieved by

successive application of two relative rotations: Oi
(j) = Rij �

Rj1 � O1, to utilize all intermediate rotations. The above

equations yield N � 1 candidate orientations for each pattern.

In an ideal case these would be identical, but because of the

sampled, interpolated and noisy data and the discrete grid

used to search the relative orientations, they scatter, or even

can be completely erroneous, i.e. identify a false common arc.

Therefore, a ‘selection and averaging’ procedure is performed

on the N � 1 candidate orientations to improve the reliability

and precision of the final absolute orientation assigned to the

given pattern. This selection and averaging is illustrated in the

left panel of Fig. 4, and is realized as follows. (i) For each

pattern, the distances of candidate orientations are calculated

as �jj0 ¼ arccosðftrace½O
ðjÞ
i �O

ðj0Þ
i � � 1g=2Þ. The misorientation

angle given by this formula is a natural metric in the rotational

group (Morawiec, 2004). (ii) For each candidate, Oi
(j), the

number of other candidates, Oi
(j0), falling within a distance

range given by a tolerance angle, �lim, is determined. (iii) The

most populated neighbourhood is selected; in case of a tie, the

smaller average misorientation is preferred. (iv) The orienta-

tions within this group of candidate orientations are averaged

and assigned to the given pattern as its most probable absolute

orientation, Oi. The selection within a range eliminates

outliers and the averaging improves the precision. The quality

of the result is ensured by the proper choice of the tolerance

angle parameter, which should allow averaging of naturally

scattered orientations but should exclude erroneous ones.

2.7. Symmetric objects

The structure of single particles one wishes to determine

may be symmetric. One can think of simple geometric body-

shaped nanoparticles (Chapman et al., 2011), icosahedral

viruses (Seibert et al., 2011) or the quaternary structure of

multi-chain proteins. The real-space symmetry of the scat-

tering density given by the point group leads to at least the

same symmetry of the Fourier intensities in the reciprocal

space. An inversion is possibly added (if not present before),

due to Friedel’s law, as discussed above. From the point of

view of orientation problem, symmetry means that a given

pattern’s orientation cannot be unambiguously determined.

The same measured pattern can be located in several

equivalent settings in the reciprocal space, related by unknown

symmetry operations. Note that we use the word ‘setting’,

instead of orientation, as they may be related by other

operations than a simple rotation (see below).

The common arc orientation method was extended not just

to handle the scattering patterns of such symmetric objects,

but also to take advantage of them. With this addition it is

possible to identify the symmetry elements and also their

orientation (the direction of rotation axes and normal vectors

of mirror planes) in the reciprocal space. The idea is as follows:

equivalent settings of the same pattern will yield several

equally high peaks in the �ð�;�;�Þ correlation map, when

searching for the matching common arcs as a function of the

relative orientation of two patterns, Pa and Pb. Each of these

peaks indicates a highly correlating common arc and its

position in the map provides the appropriate relative rotation.

As a complication, equivalent settings can be related by

operations other than a proper rotation. These are the inver-

sion, a reflection or an improper rotation. However, these all

can be separated into an inversion and a proper rotation. The

latter component can be found by doubling the correlation

map, i.e. calculating �ð�;�;�Þ using one of the inverted
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Figure 4
Simple illustration of selection and averaging procedure in two
dimensions. Points on the plane represent orientations; their distance
corresponds to the misorientation angle. A group quality threshold, i.e. a
radius, is given as a parameter, and the neighbours within this radius are
determined for each element. The most populated neighbourhood is
selected and averaged. Left panel: only one group is determined (solid
circles), the remaining elements are treated as outliers (empty circles).
Right panel: the procedure is applied repeatedly to obtain a predefined
number of groups (various colours), in between excluding the already
clustered elements.



patterns, Pb, for example. If reflective symmetry is present, this

map contains the same number of peaks with similar quality as

the first map; otherwise it contains no peaks at all. The total

number of peaks found on the two maps (� and �) should be

equal to the number of equivalent settings, i.e. the order or

multiplicity, M, of the point-group symmetry of the reciprocal

space. By defining appropriate criteria on the local maxima on

the maps this number can be determined automatically.

However, in the present implementation of the algorithm, the

expected multiplicity is given as an input parameter and that

number of peaks is identified on the correlation maps. This

approach does not exclude the possibility of determining the

unknown multiplicity by testing all possible values of M (being

a small integer number), and selecting the value that yields a

consistent point-group symmetry (see below).

Once the M relative operations (rotations, or possibly

rotations combined with inversion), sRij, are determined for all

pattern pairs from the correlation maps, we derive the abso-

lute settings of the patterns based on similar equations that we

used in the absence of symmetry: sOi
(1) = sRi1 � O1 and s,s0Oi

(j)

= sRij �
s0Rj1 � O1. The s superscript refers to one of the M

symmetry equivalents. The only difference is that some of

these equivalent settings may involve inversion and also that

we will obtain a total M + M 2
� (N � 2) of them. This set of

candidates contains all the M-equivalent absolute settings

mixed together, with a redundancy of the order of approxi-

mately M � N-fold. Therefore, a kind of clustering must sort

them out and the redundancy is exploited by averaging. We

can apply again the above-described selection and averaging

procedure M times repeatedly, and remove the already aver-

aged elements between the runs. The procedure is illustrated

in the right panel of Fig. 4. This approach resembles the quality

threshold clustering algorithm (Heyer et al., 1999) in the sense

that it limits the extent of clusters, but here the number of

clusters is also limited. Consequently, some elements will not

belong to any of the clusters; these are treated as outliers. By

obtaining M-averaged absolute settings for each pattern the

orientation problem of a symmetric object is solved, but we

can go further and determine the symmetry operations

themselves.

Any operation that transforms one setting of a pattern to an

equivalent one is a symmetry operation. These can be written

with the help of the above-determined absolute orientations

as sOi � (s0Oi)
�1. This set contains M2

� N symmetry opera-

tions derived from the equivalent settings of all patterns.

However, many of them should be close to others, as there are

only M common symmetry operations for all patterns, repre-

senting again an M � N-fold redundancy. Their mixture is

clustered into M distinct, quality-assured groups again by the

repeatedly applied selection and averaging procedure to

provide the M-averaged symmetry operations, i.e. the

elements of the point group of the reciprocal space. The

special directions of these operations (axes of rotations and

normal of reflections) reveal the high-symmetry directions of

the oriented patterns, which could be very useful during a

visual inspection. Also, and perhaps more importantly, the

relation of the determined symmetry operations can be

analysed to verify whether they form a valid point group. If

not, possibly there may be a clue as to whether one should

cancel or include symmetry elements and accordingly modify

M, the expected multiplicity. Moreover, it is also possible to

test all possible values of M (up to a reasonable limit), and

pick the one that yields a consistent point group. This

approach enables determination of the symmetry without its a

priori knowledge.

One may argue against the implicit treatment of Friedel’s

inversion symmetry as described earlier, stating that inversion

is just a symmetry element and could be treated the same way

as any other reflective symmetry element described in this

section. However, there is a significant difference, which

makes inversion unique: it is the only symmetry element that

can be applied where there is a lack of orientation informa-

tion. It requires only fixing of the origin, in contrast to other

types of point-group symmetries that involve some unknown

orientation of the symmetry element (mirror plane or rotation

axis). Therefore, the latter symmetry elements can only be

treated as described here. While the inversion could be treated

both ways, it is preferable to handle it implicitly during the

correlation mapping as it improves the reliability of the

determined relative orientations.

2.8. Missing data

An ideal single-particle diffraction pattern would cover the

whole annulus between the coaxial cones defined by the

beamstop and the crystallographic resolution. However, the

patterns obtained experimentally often have unmeasured, or

unusable regions even within this area. These missing regions

are typically due to gaps between elements of a multidetector

system, saturation at low angles, bad pixels or any other

experimental deficiency. In general, an arbitrary mask on the

data must be handled.

Missing data can be treated when calculating the above-

defined correlation factor, simply by using only the pixels

along the common arc that are present in both patterns

(l 2 Pa \ Pb). In principle, that is all that has to be done;

however, this makes the calculation more demanding as the

number of common pixels and the normalization vary with the

relative orientation. Yet to be able to pre-normalize the

patterns, as an approximation, we have slightly modified the

formula for the correlation written as the ratio of the covar-

iance and the product of standard deviations:

� ’

P
l2Pa\Pb

wlðal � �aaÞðbl �
�bbÞ=

P
l2Pa\Pb

wl

P
l2Pa

wlðal � �aaÞ2=
P
l2Pa

wl

" #1=2 P
l2Pb

wlðbl �
�bbÞ2=

P
l2Pb

wl

" #1=2
;

�aa ¼

P
l2Pa

wlalP
l2Pa

wl

; �bb ¼

P
l2Pb

wlblP
l2Pb

wl

: ð3Þ

Here, the weighted covariance (the nominator) is calculated

for the pixels of the common arc present in both patterns, but
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the weighted mean and standard deviations are calculated for

the pixels present in the given pattern (allowing its preli-

minary calculation). This approximation assumes that the

weighted mean and standard deviation are not affected very

much by the elements present only in one, but not in the other

pattern. It is acceptable if a moderate fraction of data points is

missing. The formula returns the exact value if there are no

missing data.

3. Results and discussion

3.1. Preparation of synthetic data

Beyond a description of the common arc orientation

method, the secondary objective of our work is to demonstrate

its capabilities in finding the correct orientation of single-

particle diffraction patterns. To be able to validate the results

the operation is demonstrated on synthetic, but as realistic as

possible, data created under total control of parameters. This

is achieved in three separate groups of tasks. (i) Calculate

numerous diffraction patterns of selected test objects in

random orientation. Make them more realistic by including

counting noise and introducing missing regions in the patterns.

(ii) Transform the patterns from the Cartesian detector grid to

a polar grid suitable for the orientation algorithm. Perform the

common arc method: map the correlations with relative

orientation, determine the absolute orientation of each

pattern and the symmetry operations, if applicable. Also

combine the oriented two-dimensional patterns to the three-

dimensional reciprocal-space distribution ready for structure

reconstruction. (iii) Verify the obtained orientations and the

constructed three-dimensional distributions against the ones

used at the preparation phase and analyse the errors that

characterize the method.

To demonstrate and test all aspects of the common arc

method we have chosen two scattering objects. One of them

was inspired by recent experiments performed at the already

operational X-ray free-electron lasers (Seibert et al., 2011). It

is a model of a large virus with internal structure and pseudo-

symmetry, investigated with non-atomic resolution using

longer-wavelength radiation and Friedel’s law is assumed to be

invalid. The other one is an example of objects targeted by the

ultimate single-particle diffraction experiments planned at

future X-ray free-electron laser sources (Miao et al., 2001). It is

a symmetric protein structure investigated with atomic reso-

lution using shorter-wavelength radiation and Friedel’s law is

assumed to be valid. The details of the pattern-generating

procedure are described below and the important parameters

of these two objects and the simulated experiment are listed in

Table 1.

(i) Virus model with internal structure and pseudo-symmetry.

The overall shape of the model object was created with the

help of Gielis curves (Gielis, 2003) extended to two dimen-

sions, also called the spherical product of two superformulas.

These functions define simple two-dimensional surfaces with

the help of a few control parameters resembling the shape of

various bodies found in nature. This boundary was smeared

out with the help of a Fermi–Dirac function yielding the

primary three-dimensional scattering density. With the linear

combination of several such primary densities it is possible to

create some lower- or higher-density regions within the

particle or even features such as a shell with different density.

Then a 20% random fluctuation of this combined scattering

density was introduced to imitate a fine local structure with

relatively low contrast. Finally, an imaginary part was added to

the density in order to yield scattering patterns not obeying

Friedel’s law. Its amplitude was set to 10% of the real density

according to the typical f2/f1 ratio of the atomic scattering

factor corrections of C, N and O elements at the given

radiation energy. The absolute value of the complex scattering

density is illustrated in Fig. 5.

(ii) Symmetric protein molecule at atomic resolution. Our

choice was the ribulose 1,5-bisphosphate carboxylase/oxyge-

nase protein assembly, RuBisCo (Wildman, 2002; Portis &

Parry, 2007), partially because of its abundance in the related

literature (Miao et al., 2001) including our study on grouping

of its low-intensity patterns (Bortel & Faigel, 2007; Bortel et

al., 2009) and partially because of its highly symmetric tertiary
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Table 1
Parameters of the two scattering objects used in preparation of the
simulated single-particle diffraction experiment.

Virus model Protein molecule

Size of the object �5000 Å �150 Å
Symmetry of object Pseudo fivefold axis Exact 422 point group
Wavelength/energy

of radiation
50 Å/248 eV 1.24 Å/10 keV

Friedel’s law Invalid Valid
Pulse fluence 0.03 � 1012/(10 mm)2 30 � 1012/(100 nm)2

Crystallographic
resolution

100 Å 2.4 Å

Maximal scattering
angle

29� 30�

Counts in outer
Shannon–Nyquist
pixels

0.7 0.2

Fraction of missing
pixels

0.22% 0.15%

Number of patterns 100 100

Figure 5
Absolute value of the three-dimensional complex scattering density of
the virus model shown on a combined isosurface and cut-slice plot. The
object has a pseudo-symmetric shape, and internal structure on various
length scales with small contrast. An imaginary part was added to make
Friedel’s symmetry invalid.



structure. Structural data were taken from the Protein Data

Bank (PDB) ID 1ej7 (Duff et al., 2000), and the biologically

active unit of eight long and short chains was generated using

the 422 point-group symmetries. The weight of the approxi-

mately spherical assembly is about 0.54 MDa. According to

the high energy of the radiation, Friedel’s law was assumed to

be valid.

Calculation of the scattering amplitudes was somewhat

different for the two objects. For the three-dimensional elec-

tron-density model the scattering amplitude in the reciprocal

space was calculated by three-dimensional discrete Fourier

transform. The simulated scattering patterns on the planar

Cartesian detector were obtained by interpolation to the

corresponding two-dimensional projected grid of the

randomly oriented Ewald spheres. For the atomistic protein

model the scattering amplitudes at each scattering vector of

the two-dimensional pattern were calculated directly by

summing up the spherical wave contributions of each atom,

taking into account the atom’s form factor and its phase due to

its position. In the case of both objects the scattering ampli-

tudes were squared and scaled to photon counts that enabled

us to include counting statistics in the simulated scattering

patterns. For this we assumed a realistic 0.4 e Å�3 average

electron density in the case of the virus model object, the

experimentally achievable photon fluence (number of

incoming photons per focal spot area) and detector pixel size

corresponding to the Shannon–Nyquist sampling. The solid

angle of this pixel was taken as (�/2D)2, � being the wave-

length and D the object size (Huldt et al., 2003; Shneerson et

al., 2008).

As the last step of synthetic data creation, a random 0.1% of

the pixels and the ones having counts larger than 1% of the

forward scattering value were masked out, representing some

bad and saturated pixels, respectively. One of the synthetic

scattering patterns of the RuBisCo enzyme is shown in Fig. 6.

Note that, in spite of valid Friedel’s law, the individual scat-

tering patterns are not centrosymmetric because of the

curvature of the Ewald sphere. Nevertheless, an approximate

symmetry is observable in the central region, where the

tangent plane well approximates the sphere. A total of 100

patterns were generated for both objects and passed to the

orientation procedure, keeping the orientation information

for verification purposes. We have to note that these simulated

patterns could also be interpreted as the result of a classifi-

cation and averaging procedure of a larger set of weaker

diffraction patterns.

3.2. Orientation by the common arc method

The scattering patterns created on a Cartesian detector grid

are first transformed onto a polar grid suitable for the common

arc search procedures. This extra step was intentionally

included as a preparation to accept real data. The different

geometry of the two grids, specifically the mismatch of the

point densities, necessitated a combined interpolation and

averaging procedure. To utilize most of the information,

interpolation is the better choice where the targeted polar grid

is denser than the original Cartesian grid, and averaging is

preferable in the opposite case. The step size of the polar grid

was chosen as 0.5� in the polar and 1� in the azimuthal

direction. Consequently, the steps of the three Euler angles

during the orientation search were also 1�. In the correlation-

factor calculations all pixel values were normalized with their

corresponding solid angle, i.e. the intensity was used rather

than the pixel-size-dependent counts. Furthermore, all

patterns were pre-normalized by the average scattering-angle

dependence to prevent domination of the low-scattering-

angle, high-intensity regions. The weights used in the corre-

lation factor were chosen proportionally to the scattering

angle representing a higher sensitivity of the outer pixels to

the orientation. The validity of Friedel’s law and an eightfold

symmetry multiplicity was assumed in the case of RuBisCo.

The common arc orientation of 100 patterns with the above

parameters takes several hours on a typical desktop computer.

The most time-consuming task is to calculate the correlation
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Figure 6
One of the 100 calculated scattering patterns of the RuBisCo protein. The
square-root intensity scale represents photon counts in the Shannon–
Nyquist sampling pixel size, having (�/2D)2 solid angle. To make low
counts visible, only the 0–16 counts range is shown, larger values are
saturated to the same colour. The average count in the outermost
indicated resolution shell of 2.4 Å is about 0.24. The mask of the missing
and saturated pixels is visible in the centre as a white area that is handled
by the orientation algorithm.

Figure 7
Zoomed intersection of two oriented scattering patterns of the virus
model showing the perfect correlation of intensities along the common
arc. The hole in the centre is due to the saturated and missing pixels that
were made transparent.



map of the relative orientations. It could be speeded up by

parallelization.

The success of the common arc orientation process can be

assessed from several indicators already available during its

progress. The maximal correlation values of the �ð�;�;�Þ
maps indicating common arcs are strongly affected by the

signal-to-noise ratio in the corresponding patterns. While in

the high-intensity, low-noise case the peak correlation

approaches 1 and the peak clearly stands out from the map, in

the opposite extreme they ultimately diminish in the average

correlations of non-common arcs. Therefore it is worth

analysing the amplitude, shape and width of the peaks and also

visualizing the corresponding relative orientation. Fig. 7 shows

a perfectly matching common arc of two patterns of the virus

model object found by the algorithm. Here the correlation

factor of the intensities along the arc is 0.95, but the distri-

bution of the local maxima of all pattern pairs falls between

0.5 and 0.95. During verification of the resulting orientations

in the next section we will see that such low correlations

already allow one to correctly determine the orientations.

When determining the absolute orientation by the selection

and averaging procedure, the fraction of selected and aver-

aged orientations serves as another useful indicator of the

quality of the result. Its higher value expresses the consistency

of the candidate orientations and the reliability of the average.

A value of 100% would indicate that all common arcs have

been consistently found and contribute to the average.

Nevertheless, our experience shows that a value as low as 10%

is already enough to correctly orient all patterns with low

error (see the verification below). The relevant parameter, the

averaging range angle, �lim, was chosen as 3�, a few times the

grid step size, which was confirmed by the typical peak widths

found on the orientation map and present in the misorienta-

tion-angle distributions. This shows the importance and

effectiveness of this step in filtering the consistent orienta-

tions.

In the case of symmetric objects, such as RuBisCo, the

symmetry operations determined by the common arc method

also give the opportunity of a self-consistency check. Fig. 8

illustrates how the symmetry operations are obtained. Two

equivalent settings of one selected example pattern defined by

multiple peaks of the �ð�;�;�Þ maps reveal the underlying

symmetry operation, in this case a 180� rotation indicated by

the red arrow. If these operations are found to be common for

the equivalent setting of all patterns, then ultimately they

define the corresponding twofold symmetry axis with high

reliability via selection and averaging. Other symmetry

operations can be derived similarly, a total of eight, the

expected multiplicity. The axes of these operations are also

shown in Fig. 8. Their folds were determined from the corre-

sponding rotation angles that happened to be 0�, 90� and 180�,

which is already a good sign. Furthermore, the symmetry axes

make 45�, 90� or 135� angles. It can be verified that these

symmetry operations do form the complete 422 point group.

In general, finding symmetry elements that define a valid point

group is a strong indication of the correctly identified

symmetry group, merely from its multiplicity. To demonstrate

the feasibility of determining the multiplicity itself, we

attempted to perform the common arc orientation by

assuming a multiplicity of 7 or 9. The result was either lack or a

surplus of symmetry operations and the required complete-

ness of the point group revealed the correct symmetry. The

high accuracy of the symmetry operations determined from

the equivalent settings of all patterns – less than 0.01� error in

the rotation angles and the direction of the axes – is attributed

to the high degree of redundancy.

3.3. Verification of the results

The above observations characterize the common arc

orientation method in itself and can also be examined in the

case of real data. Now, taking advantage of synthetic data, we

can judge the results based on the original orientation infor-

mation kept from the pattern-preparation phase. This allows

Acta Cryst. (2011). A67, 533–543 Bortel and Tegze � Common arc method 541

research papers

Figure 8
Two possible settings of a pattern and the four- and twofold axes of
symmetry operations as found by the common arc orientation method.
The two settings are found to be related by a 180� rotation (indicated by
the red arrow) that defines one of the twofold axes. All equivalent settings
of all patterns define the symmetry operations with high precision. These
form the RuBisCo’s complete 422 point group. Plotting of all eight
equivalent and also the eight Friedel inverted settings of the oriented
pattern would make the figure too busy.

Figure 9
Distribution of the misorientation angles of the oriented patterns for the
virus model object (left panel) and the RuBisCo protein assembly (right
panel). The values verify the orientations determined by the common arc
method against the original ones kept from the data preparation. Low
average and maximum misorientation angles prove perfect orientation.



us to quantitatively verify the results and specify the operation

limits and the effectiveness of the method.

Fig. 9 shows the distribution of misorientation angles of the

original and the oriented patterns for both scattering objects.

The 0.4� and 0.1� mean values convert to 1.5 and 0.4 pixel

positional error at the perimeter (the highest-resolution ring)

of the individual scattering patterns. This means that in both

cases all patterns have been oriented by the common arc

method precisely enough for structure determination to high

resolution. It has to be noted that more patterns or better

statistics would further decrease the orientation errors. There

is also good reason to expect that the method works for other

objects and X-ray pulses with similar parameters as listed in

Table 1.

This success naturally raises the question of the intensity

that is required for successful orientation. The parameters

listed in Table 1 represent a safe operation regime for our two

scattering objects. Values leading to lower counts in the

diffraction patterns already caused significant orientation

errors for a few percent of the patterns, but a large fraction of

the patterns was still correctly oriented. In the case of the virus

model object the stated fluence is well above the parameters of

the already operational FLASH and LCLS XFEL sources – it

is only 3% of 1012 photons focused to 10 � 10 mm2. However,

assuming 1012 photons focused to 100 � 100 nm2 from the

European XFEL source, successful orientation of the

RuBisCo patterns requires preliminary grouping and aver-

aging, the so-called classification of patterns (Huldt et al., 2003;

Bortel & Faigel, 2007; Bortel et al., 2009), with an average 30

patterns per group. Its feasibility was demonstrated in our

previous work (Bortel et al., 2009). Here we note that this

preliminary classification and averaging of the two-dimen-

sional patterns is advisable only if necessary; otherwise, as in

the case of the virus model object, it is preferable to directly

orient the measured patterns.

For easy comparison to the work of Shneerson et al. (2008)

on the orientation by the common lines, the mean photon

count in a Shannon–Nyquist pixel at the highest-resolution

ring is also given in Table 1. The sufficient 0.7 and 0.2 counts

for our two scattering objects indicate that the common arc

method is able to orient at significantly lower intensities with

higher precision than was anticipated from the performance of

the approximate method. The cited work states 10 counts per

pixel and 4� average misorientation error and draws a rather

pessimistic conclusion on the feasibility of such experiments.

We attribute the origin of the improvement to the precise

handling of the curvature of the common arcs and to

exploiting the high degree of redundancy of all relative

orientations which in a noisy case improves the tolerance of

the method. This signal level also gets close to that of other

algorithms (Loh & Elser, 2009; Fung et al., 2009).

The iterative phase-retrieval algorithms – the last step in

determining the actual density of the scattering object –

typically require the reciprocal-space intensities on a three-

dimensional Cartesian grid, suitable for fast Fourier transform

cycles. These data were prepared by binning all original two-

dimensional patterns (not the ones transformed to the polar

grid) to the voxels of the three-dimensional grid utilizing the

orientation information provided by the common arc method.

Contributions to each voxel were then averaged. Three main

slices of these volume data through the origin of the reciprocal

space are shown in Fig. 10. The outer regions with no pattern

contribution yield a fuzzy surface of the roughly spherical

volume that is defined by the original diffraction patterns. The

intensity of the voxels further in, with contributions from

many patterns, possesses very high reliability. Although this

volume contains all pixels of all patterns, it obviously has to be

trimmed to make it usable by the reconstruction process. The

voxel–voxel correlation of these data and the original intensity

distribution in the reciprocal space were calculated as a

quantitative measure of the accuracy. The high correlation-

factor value of 0.98 indicates that the common arc orientation

method including the necessary data transformation from the

two-dimensional detectors to the three-dimensional volume

grid results in a faithful reproduction of the diffraction

intensity.

For successful real-space structure reconstruction the noise

level of the three-dimensional diffraction intensity should be

sufficiently low. Various studies (e.g. Miao & Sayre, 2000)

demonstrate the noise tolerance of the iterative phase-

retrieval algorithms, even in the case of complex valued three-

dimensional densities. As the common arc method is able to

orient the two-dimensional noisy patterns with high precision,

the signal-to-noise ratio of the three-dimensional reciprocal-

space data improves by increasing the number of measured

patterns and the signal-to-noise-level requirement of the
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Figure 10
Three main slices of the three-dimensional intensity distribution in the
reciprocal space as constructed from the original two-dimensional
scattering patterns of RuBisCo oriented by the common arc method.
The fuzzy surface of the roughly spherical volume is due to the voxels that
do not have a contribution from any of the oriented patterns. Voxels
further in are defined by more and more patterns with higher reliability.
These data have a correlation of 0.98 with the original intensity
distribution in the reciprocal space.



reconstruction procedure can be met. This way the success of

structure reconstruction depends on the quality and quantity

of the measured diffraction data.

4. Conclusion

The common arc method for the orientation of continuous

diffraction patterns of non-periodic single particles has been

described in detail. The method relies on the curved inter-

section of Ewald spheres in finding the relative orientation of

all pairs of diffraction patterns, and then determines a

consistent orientation for each of them via selection and

averaging. The approach is significantly new compared to

recent application of the approximate method of common

lines (Shneerson et al., 2008) adapted from the field of cryo-

electron microscopy. Taking simulated diffraction patterns of

various scattering objects, the common arc orientation method

is shown to be able to operate at significantly lower intensity

levels (less than a count per pixel) and yield orientations with

higher precision (within a few tenths of a degree) than was

anticipated earlier. Also it was extended to handle missing

regions in the diffraction patterns and to take advantage of

Friedel’s symmetry, if it exists. In the case of symmetric scat-

tering objects the symmetry operations are automatically

obtained from the equivalent settings of the patterns and

ultimately the complete point-group symmetry can be deter-

mined. It is a non-iterative method providing deterministic

results, with various indicators on the reliability and consis-

tency of the orientations; therefore it can also aid iterative

orientation algorithms with a biased state in emerging from

their random initial states. It is also shown that the common

arc orientation process introduces no artefacts into the three-

dimensional reciprocal-space intensity distribution and

therefore can contribute to the success of structure recon-

struction.
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